Читать книгу Earth Materials онлайн
110 страница из 155
Rubidium–strontium systematics
Several isotopes of the relatively rare element rubidium (Rb) exist; some 27% of these are radioactive87Rb. Most Rb+1 is concentrated in continental crust, especially in substitution for potassium ion (K+1) in potassium‐bearing minerals such as potassium feldspar, muscovite, biotite, sodic plagioclase, and amphibole. Radioactive87Rb is slowly (half‐life = 48.8 Ga) transformed by beta decay into strontium‐87 (87Sr). Unfortunately, the much smaller strontium ion (Sr+2) does not easily substitute for potassium ion (K+1) and therefore tends to migrate into minerals in the rock that contain calcium ion (Ca+2) for which strontium easily substitutes. This makes using87Rb/86Sr for age dating a much less accurate method than the U/Pb methods explained previously.
One basic concept behind rubidium–strontium dating is that the original rock has some initial amount of87Rb, some initial ratio of87Sr/86Sr and some initial ratio of87Rb/86Sr. These ratios evolve through time in a predictable manner. Over time, the amount of87Rb decreases and the amount of87Sr increases by radioactive decay so that the87Sr/86Sr ratio increases. At the same time, the87Rb/86Sr ratio decreases by an amount proportional to sample age. A second basic concept is that the initial amount of87Rb varies from mineral to mineral, being highest in potassium‐rich minerals. As a result, the rate at which the87Sr/86Sr ratio increases depends on the individual mineral. For example, in a potassium‐rich (rubidium‐rich) mineral, the87Sr/86Sr ratio will increase rapidly, whereas for a potassium‐poor mineral it will increase slowly. For a mineral with no87Rb substituting for K, the87Sr/86Sr ratio will not change; it will remain the initial87Sr/86Sr ratio. The87Rb/86Sr ratio of the whole rock however decreases at a constant rate that depends on the decay constant.